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Summary

There is a great need for increased use and further development of automated sound recording
and analysis of avian sounds. Birds are critical to ecosystem functioning so techniques to make
avian monitoring more efficient and accurate will greatly benefit science and conservation
efforts. We provide an overview of the hardware approaches to automated sound recording as
well as an overview of the prominent techniques used in software to automatically detect and
classify avian sound. We provide a comparative summary of examples of three general categories
of hardware solutions for automating sound recording which include a hardware interface for a
scheduling timer to control a standalone commercial recorder, a programmable recording device,
and a single board computer. We also describe examples of the two main approaches to
improving microphone performance for automated recorders through small arrays of
microphone elements and using waveguides. For the purposes of thinking about automated
sound analysis, we suggest five basic sound fragment types of avian sound and discuss a variety
of techniques to automatically detect and classify avian sounds to species level, as well as their
limitations. A variety of the features to measure for the various call types are provided, along
with a variety of classification methods for those features. They are discussed in context of
general performance as well as the monitoring and conservation efforts they are used in.

Introduction

Acoustic communication in birds is rich and lends itself to one of the primary ways in which
birds make their presence known to each other, as well as one of the most direct ways for
humans to detect them, often at times when they are difficult to see. Further, the vast majority
of birds have songs or calls that serve as a species-specific acoustic signature that readily
announces their presence. This abundance of sound provides a readymade source of information
that can be used to explore the composition of avian diversity in particular regions of interest.

There is a great need for avian monitoring in conservation efforts. Birds are the most speciose
group of terrestrial vertebrates and they encompass a wider range of habitats than any other
group of vertebrates on the planet. Birds are particularly abundant and diverse in the tropics,
consisting of both generalists and specialists, as well as migrants and local breeders. They are
important consumers at several trophic levels; they eat fruit, grains, nectar, insects, and vertebrates.
As such wide-ranging consumers, birds contribute to a variety of important ecosystem functions. As
insectivores, they play a role in controlling insect populations (Holmes 1990; Holmes et al. 1979), as
frugivores they are particularly important plant dispersal agents (Snow 1971, 1981, Howe and
Smallwood 1982), and as nectar consumers they are important pollinators (Carpenter 1978,
Feinsinger and Colwell 1978, Proctor et al. 1996). Since birds play such varied and widespread roles
in ecosystem functions, they are vulnerable to both human induced habitat change (Becker and
Agreda 2005, Canterbury and Blockstein 1997) and global climate change (Pounds et al. 1999), and
as a result many species are declining (Collar et al. 1994).
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Bird sound is the most efficient means for surveying birds, particularly in the tropics (Parker
1991, Riede 1993, Kroodsma et al. 1996). A variety of methods for monitoring and assessing
birds are available (Ralph and Scott 1981, Verner 1985, Bibby et al. 1992, and Ralph et al. 1993)
and three widely used techniques are mist-netting, point counts, and transect counts. Of these,
only mist-netting does not include the use of passive acoustics. Point and transect counts that
make use of bird sounds are more efficient than mist-nets (Parker 1991, Angehr et al. 2002).

Acoustic surveying lends itself to rapid assessment programmes (RAP) which quickly evaluate
the biodiversity of specific regions (Riede 1998). This is largely because birds are heard more often
than seen or trapped. This translates into not only more accurate species counts, but also faster
estimations of biodiversity. Parker (1991) describes how in seven days he recorded the vocalizations
of 85% of the 287 species of avifauna his team of seven ornithologists inventoried after 54 days of
intensive field work within a 2 km2 area in Amazonian Bolivia, which included 36,804 mist-net hours.

The most significant drawback to point and transect counts is the reliance on highly trained
personnel for making identifications of species and the inherent subjectivity of their data due to
skill level. This can make comparisons between data from different personnel unreliable (Angehr
et al. 2002). However, the use of acoustic recorders can greatly reduce this variability, and some
studies have suggested that acoustic recordings alone are preferable to trained personnel without
recorders, since recordings are more consistent and achievable (Haselmayer and Quinn 2000,
Hobson et al. 2002, Rempel et al. 2005). Additional standardisation in data collection is possible
by using automated recorders, particularly those that can record on a programmable schedule.
Although it is often not possible to directly count the number of calling individuals this way,
there are methods available for estimating associated information useful for conservation
research. For instance, abundance estimates are needed to make use of many metrics of
biodiversity change, and automated recorders scheduled to record at the same time and spaced
far enough apart to not record the same individuals can be used to provide these estimates
through occupancy modelling (Royle and Nichols 2003, Mackenzie et al. 2005).

Having this process automated can involve more than just having the recording itself
automated; it also includes automating the sound analysis and species identification. This automation
can take the form of simple template matching or more advanced techniques such as those used in
human speech recognition. There is still much work to be done with automatic call recognition (ACR)
software, particularly with classifying a wide range of bird species recorded in a natural setting and
detecting novel calls, but promising inroads have been made and some ACR methods have been
shown to work in suitable settings. The remainder of this work is organized as follows. A summary of
useful hardware approaches to automating acoustic recording of bird sound is provided. Then, an
overview of approaches to automated analysis of bird sound is given followed by concluding thoughts
and direction of future research.

Hardware for automated recording of bird sounds

Hardware for scheduled recordings

The basic components of hardware for use in automated recording of bird sound are the
microphone, audio recorder, power supply, mechanism for initiating and ending recordings, and
a weather-proof housing for the equipment. The hardware described here consists of devices
designed to operate autonomously in remote locations and record high quality digital sound
stored on hard drives or flash memory cards at scheduled intervals of time. There are three
primary approaches to developing this sort of recording apparatus. Here I provide details and
examples of all three of these approaches. While the examples are by no means exhaustive, they
are a representative overview of the three main categories of the current technology available,
and a list of vendors is provided just before the reference section. The first but least sophisticated
approach is to design a scheduling timer through a hardware interface to control a standalone
commercial recorder. This is the least desirable option since it typically involves tampering with
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the recorder and using it in a way not intended by the engineers who designed it, but it is the
least expensive. A commercially available example of this type of device is the programmable
timer circuit board by Nauta, an Italian company, which is adapted to control the M-audio
Microtrack 24/96 recorder. Though the field-ready product they sell is intended for cetaceans,
they also sell their timer board by itself and provide detailed instructions for its installation and
use, and it can be readily adapted for use in recording birds. This device saves sound as non-
compressed wave-files. Devices that save sound as mp3 files or other compressed formats are less
attractive since data is lost. This compression format is designed to be minimally detectable to
human ears, so researchers should do a comparative analysis on their sounds recorded in both
lossless and lossy sound recording formats to verify that their target sounds are not degraded by
the recording format chosen, and not just listen to the recordings.

A more elegant approach is to write software for a programmable recording device, such as a
personal digital assistant (PDA) or a smart phone. This approach is preferable to the previous one
in that the recording device does not need to be tampered with and it lends itself to more
complicated recording schedules. For instance, a recording schedule starting 30 minutes before
sunrise, as opposed to a fixed clock time such as 06h00, is more readily accomplished through
software running on a PDA than with an external timer circuit board. A further benefit to these
devices is that they are designed to be user-friendly and the scheduling software can be written
for use by non-technical personnel. An example of this type of device is one built by
Conservation International (Brandes 2005). In their device, an HP iPac 5550 is used to record
sound at scheduled intervals and store it on 4 GB flash memory cards (this scheduling software is
available at no cost from the Tropical Ecology Assessment and Monitoring Network at
Conservation International or by sending an email request to the author). The PDA approach is
not as power efficient as it could be, in that connecting it to an external battery supply begins the
process of recharging the on-board Li-ion battery instead of powering the unit directly.
Conservation International’s PDA recorders require about 17 amp-hours of battery life to record
10 minutes of sound daily for two weeks, which can be accomplished with eight high-capacity NiMH
batteries. Both of these approaches are susceptible to changes in hardware by the manufacturers in
the form of firmware or operating system updates and much work might need to be done to keep up
with the latest hardware available. This approach in particular has been used in monitoring
nocturnal sounds in tropical forests, but it could readily be used to monitor diurnal avifauna.

The most sophisticated of the approaches presented here is to develop recorders with single-
board computers. This provides the developer with the most control in creating a device designed
for the sole purpose of recording sound autonomously. To do this properly requires a dedicated
engineering lab, and a few labs now offer their products commercially for purchase or for lease.
An experienced lab in this area is the Bioacoustics Research Program (BRP) at the Cornel Lab of
Ornithology. For many years they have been developing autonomous recording units (ARUs)
for both terrestrial and underwater use. They currently offer these units for lease and can
custom design the sampling schedule to fit particular requirements. They store sound onto an 80 GB
hard drive and can be deployed for months at a time. BRP also makes ARUs that record in stereo and
use a GPS time-stamp, enabling the recordings to be used to find the position of animals and track
their movement. These recorders have been used for many years in the ongoing effort to find the
Ivory-billed Woodpecker Campephilus principalus (Fitzpatrick et al. 2005), and this has contributed
to their continued improvement. A private company, Wildlife Acoustics, now offers a single-board
computer type of recorder commercially. It stores 80 hours of sound and can be kept in the field for a
month or longer on a single set of batteries. They have recently been used to monitor breeding
Cerulean Warblers Dendroica cerulea by the U.S. Forest Service.

Microphones for automated recording

Microphones for hand-held field recordings can be quite specialized, and the same is true of
those for automated recorders. Typically, microphones for handheld recordings are far more
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sensitive to sound in the direction they are pointed, preventing sounds incident at other angles
from being recorded as loudly. This type of microphone works well when a researcher wants to
record a particular individual that is singing. With automated recorders, the opposite is true, in
that omni-directional microphones are used instead of directional microphones since there is no
way of knowing ahead of time where a sound will originate. Single-element omni-directional
microphones can be effective, but there are two basic approaches to increase their effectiveness.
The first is to use a small array of microphone elements to create a more sensitive beam-pattern
than that of a single microphone element. An example of this is the linear 16-element
microphone array (less than 15 cm in length) designed by BRP for use with their ARUs. These
arrays form a beam-pattern in the shape of a toroid (Figure 1, a). They are most sensitive to
sound around the axis of the microphone array, and least sensitive in the direction pointing from
each end. By placing this microphone array in a canopy hanging downward, it is sensitive to
sound originating from any direction within the canopy, and is least sensitive to sound
originating directly above or below it. A second approach to improving omni-directional
microphone gain is to use a specially designed waveguide to collect and amplify the sound before
it reaches the microphone element (Figure 1, b). River Forks Research Corporation developed an
omni-directional waveguide for the purpose of recording birds (Hobson et al. 2002). Their design
consists of two 26.67 cm (10.5 inch) plastic discs stacked 2.54 cm (1 inch) apart that have a
hyperbolic curve in their inner surface that is used to amplify incoming sound. The microphone
element is placed at the centre, between the discs. They are mounted horizontally, but are
sensitive to sound above and below the waveguide as well as sound originating from all other
angles. They are well suited to record birdsongs, but are more expensive than most high quality
hand-held microphones.

Figure 1. (a.) Toroid shaped beam-pattern for a small microphone array and (b.) the hyperbolic
waveguide. The beam-pattern indicates how sensitive the microphone is to sound as a function of
angle. In both of these designs, sound originating from all around the microphone can be
detected, but they are least sensitive to sound directly above or below.
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Automated analysis of bird sounds

Bird sounds as a whole are as complex and varied as any group of non-human animals. For the
purposes of thinking about automated sound analysis, there are at least five broad categories of
discrete sound unit shapes that compose bird sounds (Figure 2). These sound units include
segments with constant frequency, frequency modulated whistles, broadband pulses, broadband
with varying frequency components, and segments with strong harmonics. Even if this
summarized all of the complexity of bird sounds, this degree of variety in sound types would be
a challenging task for a single automated call recognition algorithm. Additionally, bird sounds
often include complexity in the form of variations and themes of combinations of the basic sound
shapes shown in Figure 2. If we think of those discrete chunks of sound as syllables, then this
complexity can range from simple repeated sequences of syllables to complex sequences of
syllables with patterns that seldom repeat. We can add to this complexity with field situations
that make detection and classification more challenging when encountering duets, choruses of
overlapping songs, intentional call masking, and vocal mimicry. Finally, difficulty in creating
automated classifiers can arise from species that have regional dialects, very large song
repertoires, and even improvisational songs.

At the least, automatic call recognition of bird songs is complex, but much has been done to
make it viable when focused on a limited number of species. The analysis process has two
primary parts, call feature extraction and call classification based on the features. The choice of
which features to measure depends largely on the characteristic structure of the target calls,
whereas the choice of classifier depends on the way in which the feature measurements
distinguish the various types of target calls. A list of features and classifiers commonly used on a
variety of call-types is provided in Table 1.

Typically, features are chosen such that they provide information about a call that is
characteristic about it, so that similar calls will be grouped together, and ones dissimilar will be
recognized as being different. Features that consist of direct parameter measurements of a call,
such as peak frequency and bandwidth, work well for constant frequency or simple frequency
modulated calls. A variety of simple parameter measurements have been shown effective in
nocturnal flight call monitoring of migrants (Farnsworth et al. 2004, Farnsworth and Russell,
2007, Hüppop et al. 2006). In particular, Schrama et al. (2008) chose seven direct measurements
of calls to automate a process for recognizing nocturnal flight calls of migratory birds: call

Figure 2. Spectrogram (frequency vs. time) displays of five broad categories of discrete sound
unit shapes that compose bird sounds for the purpose of thinking about species-level automated
sound recognition: (a) constant frequency (Wood Thrush Hylocichla mustelina); (b) frequency
modulated whistles (Canon Wren Catherpes mexicanus); (c) broadband pulses (Brewer’s
Sparrow Spizella breweri); (d) broadband with varying frequency components (Canon Wren); (e)
and segments with strong harmonics (Blue Jay Cyanocitta cristata).
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duration, highest frequency, lowest frequency, loudest frequency, average bandwidth, maximum
bandwidth and average frequency slope. If the call type clusters resulting from features are
linearly separable, then simple Bayesian classifiers can be used. Otherwise, neural networks can
be employed to attempt to separate the call types. Terry and McGregor (2002) successfully used
and compared three basic types of neural networks to identify individual Corncrakes Crex crex.
Since Corncrakes utter calls that consist of broad-band pulses with distinct timing, they found
that the pulse-to-pulse timing is the important feature to measure. In a novel approach, Tanttu
et al. (2006) created their own type of frequency contour vector to use in self-organizing neural
networks to recognize simple frequency modulated flight calls from crossbills Loxia spp. By
focusing only on the peak harmonic in any multi-harmonic calls, they were able to extract the
features needed to make correct identifications.

Another method that has been successful is template matching. In its basic form, this is done
by selecting an example sound as a template with which to find other instances of this sound.
This approach can work if the sound has little variation among individual birds and if the
background sounds are similar in both the template and the field recordings. This is the approach
used in the ongoing effort to find the Ivory-billed Woodpecker. Though template matching
typically works better with longer signals, it is appropriate to try with Ivory-billed Woodpeckers
since they have simple calls that have little variation and they also make distinct double rap
sounds on trees. Additionally, there are not many sample recordings of them, so a method with
an adjustable threshold for positive identification allows a wider variation of similar calls to be
marked for more detailed analysis. A more sophisticated approach is to use dynamic time
warping (DTW) in the template matching (Anderson et al. 1996). DTW is performed by
expanding and contracting the template in time to better fit songs given a little slower or faster
than the template sound. This allows for a wider range of detections than the standard template
matching, but it only works on species which have relatively consistent songs or calls.
Additionally, it requires a template for each sound to identify, so it works most efficiently with
species that have very small and consistent repertoires. Schrama et al. (2008) have shown success
using DTW to better detect nocturnal migrants by their flight call.

An entirely different approach is to use stochastic sequence modelling techniques to make
sound classifications based on short-time measurements of sound features and how those
features change in time. This is accomplished with hidden Markov models (HMM), a technique
widely used for human speech recognition. The features most commonly used for human speech
recognition are calculated with cepstral coefficients and derivatives thereof. These coefficients

Table 1. Comparison of the various features used to detect the basic sound unit shapes of bird sound in
Figure 2, along with the various classification methods used with those features. This list serves as a
summary of all the bird sound recognition methods referenced in this paper. Interestingly, none of the
methods target call type ‘d’, broadband with varying frequency components.

Target Call Type in Figure 2 Feature Extraction Classification Method

a, b direct time and frequency
measures from target calls

Bayesian classifier, Euclidian
distance

c pulse-to-pulse duration neural networks
c sound template dynamic time warping, minimum

cross-correlation threshold
e multi-spectral estimates with FFT

and related functions
multivariate statistics

a, b, e peak frequency contour vector Bayesian classifier, dynamic time
warping, hidden Markov models,
neural networks

b, e cepstral coefficients dynamic time warping, Gaussian
mixture models, hidden Markov
models
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capture the rich harmonic structure of human voice well, and the sequences of their change
throughout the course of speaking a word can be modelled accurately with HMMs. These
methods have been successfully used to classify bird songs (Kogan and Margoliash 1998, Trifa
et al. 2008), particularly with birds that have a rich harmonic structure in their songs. Cepstral
coefficients have some drawbacks though. In particular, they are very susceptible to noise and
can lead to poor classification of sounds that overlap in time, even if they do not overlap in
frequency. Notably, Trifa et al. (2008) had success using HMMs to recognize antbirds
(Thamnophilidae) in a Mexican rainforest. The species they chose do not have calls with strong
harmonics and their recordings have some degree of background noise. Another approach used
with human speech recognition that has been explored with bird sound is the use of Gaussian
mixture models (GMM) (Kwan et al. 2004). In this approach, sounds are treated as a
combination of normal distributions of sound elements, each with different densities or weights.
Each test sound being classified has a different set of these mixtures and a classification is made
based on the most likely combination estimated from sounds used to train the model. This
method has been shown to be successful with a small data set of bird species, but as with the
other approaches, it is susceptible to noise.

Perhaps the most common problem for automated identification of bird sound recorded in
natural settings is noise. Not only can the presence of noise limit the ability for birdsong
detection, it can also lead to misclassifications (Baker and Logue 2003). Far and away the most
common method for dealing with noise is to limit the sound analysis to the frequency bands
where the target sounds are found by using band-pass filters, as used by Farnsworth and Russell
(2007) and Hüppop et al. (2006) to eliminate wind and ocean wave noise. Unfortunately, these
methods can also eliminate many of the target sounds if they overlap the high noise part of the
spectrum. Another technique is to use a sample of the background sound from a recording and
subtract it out from the entire recording. This is most effective when the background noise is
constant and not broad-band, and it has a limited utility with field recordings. A different
approach is to apply a threshold filter at different frequency bands (Schrama et al. 2008). This
has the effect of selecting sounds that are above the specified sound level threshold for analysis,
but problems can arise with calls that vary in intensity. A different method to extract calls in a
noise rich environment uses image processing of spectrograms (Brandes et al. 2006). In this
approach, after a preliminary step of applying a threshold filter customized for each frequency
band, a slight blur filter is applied to the spectrogram. This has the effect of washing out
background noise, and applying a form of signal reconstruction to the calls, enabling a more
consistent form of feature extraction. Though this method was tested mostly with cricket and
frog calls from tropical forest recordings, it works equally well with detecting and classifying
avian sounds that are constant in frequency such as those from tinamous (Tinamidae).

Methods to detect and classify avian sound in high noise environments have concentrated on
extracting the peak frequency components from the songs. Tanttu et al. (2006) and Hüppop et al.
(2006) were successful at detecting flight calls by using only the peak spectral components of
calls that contained harmonics. Likewise, Chen and Maher (2006) use a method to track spectral
peaks to classify bird sound recorded at airports. Spectral peak tracks are formed by segmenting
the sound into short overlapping segments, measuring the peak frequency of that segment and
matching it with the peak found in the adjacent sound segment. These tracks are then stored in a
database and used as a template to classify the test sounds. This approach has shown to be
successful with classifying some bird species, but often makes a classification only of general call
type. In a different approach, a wide range of bird sounds can be detected and classified with a
method that uses a noise reduction step through spectrogram image processing and adds to it a
peak frequency contour feature measurement that is modelled with HMMs to classify frequency
modulated whistles and complex sequences of them (Brandes 2008). Here, features are not
extracted with cepstral coefficients, but instead with measurements of frequency, frequency
bandwidth, and the change in these parameters from the previous time step. As with Trifa et al.
(2008), this method has been shown to be effective at classifying groups such as antbirds;
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however, it has the advantage of using features that are less susceptible to background noise
typical of tropical forests than cepstral coefficients, and is a method better suited to autonomous
recordings. Additionally, Brandes (2008) employs hierarchical HMMs that find patterns at
multiple levels of organization. Bottom-level HMMs detect calls, while higher level HMMs
detect sequences of calls. This added pattern search ability allows for a much larger variety of call
types to be searched for.

There is a variety of software available that can be used to automatically detect particular bird
sounds, with proper training. None of them are comprehensive in their ability and they are all
dependent on having moderate background noise and a good training set of bird sounds,
particularly the software designed to work with human speech. We provide here a short list of
free software; web addresses are provided with the reference list. For nocturnal flight calls of
migrants, Farnsworth and Russell (2007) used software from Oldbird, Inc. Kogan and
Margoliash (1998) and Trifa et al. (2008) used software titled the Hidden Markov Model
Toolkit (HTK) from the Entropic Research Laboratory that is a software library written in C++.
One software package particularly useful in developing avian sound recognition algorithms is
the Extensible Bioacoustics Tool (XBAT) developed and distributed by the Bioacoustics Research
Program at the Cornell Lab of Ornithology (Figueroa and Robbins 2008). This software runs as a
toolbox within the MATLABH mathematical programming environment. XBAT provides an
environment designed to run standard detection algorithms, such as template matching, as well
as an environment to test and develop custom designed bird sound recognition algorithms.

Concluding thoughts

The advent of this hardware and software is drawing bioacoustics into an ever increasingly
important role in conservation. Conservation relies on documented sound recordings as a record
of a species’ acoustic signature as well as to document particular field records of observations that
can be revisited. Likewise, automatic call recognition software relies on documented sound
recordings, as they are only as good as the sound recordings used to train them. This places a
particularly high importance on the role and necessity of sound libraries. Two extensive libraries
are the Macaulay Library of Natural Sound at Lab of Ornithology at Cornell University and the
library at the Borror Laboratory of Bioacoustics at Ohio State University. These libraries house
many recordings from birds around the world, but they still lack many of the secondary calls
which are not heard as often, and more effort is needed in collecting and donating recordings of
bird calls that are more seldom heard (Kroodsma et al. 1996).

In many ways, the technology for automated recording of avian sound has arrived and the
technology for automated analysis is burgeoning. This automation will be a big boon for science
and conservation as it will greatly speed up and increase data collection from the field. This will
provide more insight to avian ecology and conservation as well as allow for enhanced monitoring
practices. For example, by having multiple recorders working simultaneously, automation can
help to remove sampling biases during surveys due to temporal factors such as how chorus
participants change throughout the morning. Also, by setting them to record before and after an
observer arrives at a sampling location, they can help to detect whether or not standard field
sampling techniques might be sensitive to observer disturbance on bird acoustic activity. The
next steps for the hardware technology will be towards wireless networks that relay sound from
remote locations back to central repositories. Additionally, more efficient solar cells will enable
devices to have their own renewable power supply, allowing them to stay longer in the field,
even when under the tree canopy.

Along with automated recorders that can last longer in the field and cost less, avian
conservation needs software that can recognize all the avifauna calling in a region. This might
require software that uses several algorithms simultaneously. Software that can effectively
extract measurements from calls given in high background noise, as well as calls that overlap in
time (even if not in frequency) is clearly required. Better yet, software that uses unsupervised or
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semi-supervised learning would greatly enhance the ability of bioacoustics to facilitate
conservation, since often the slow point in the process is collecting sample recordings with
which to train a classifier. Since many conservation efforts are undertaken in places with little
scientific research history, the need to first have a database of sample sounds can create an
impediment to automated bioacoustic monitoring. By using unsupervised learning algorithms,
software would ideally be able to learn the different sounds in an area. The work would then be
reduced to labelling the various types of sound to species afterwards. The technology used in
bioacoustics is allowing conservation and science to advance rapidly in new ways and it looks
poised to play an even bigger role in the near future.

List of Web Addresses

Borror Labroatory of Bioacoustics http://dmc.ohiolink.edu/
Cornell University’s Bioacoustics Research Program http://www.birds.cornell.edu/brp/
Extensible Bioacoustic Tool (XBAT) http://xbat.org/home.html
Hidden Markov Model Toolkit http://htk.eng.cam.ac.uk/
Macaulay Library of Natural Sound http://www.birds.cornell.edu/macaulaylibrary/
Oldbird, Inc. http://www.oldbird.org
River Forks Research Corp. http://rfrc1998.sasktelwebhosting.com/
Wildlife Acoustics, Inc. http://www.wildlifeacoustics.com/
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